

Journal of Organometallic Chemistry 633 (2001) 71-78

www.elsevier.com/locate/jorganchem

Die Beständigkeit von $(\eta^5 - C_5 H_4 R)_2 Ti(C \equiv CR')_2$ in Abhängigkeit von den elektronischen Eigenschaften der Cyclopentadienyl-Liganden. Die Festkörperstruktur von $(\eta^5 - C_5 H_5)(\eta^5 - C_5 H_4 SiMe_3)Ti(C \equiv CSiMe_3)_2$

H. Lang^{a,*}, E. Meichel^a, T. Stein^a, S. Back^a, E. Hovestreydt^b

^a Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Lehrstuhl für Anorganische Chemie, Straße der Nationen 62, D-09111 Chemnitz, Germany

^b Bruker axs GmbH, Analytical X-ray Systems, Östliche Rheinbrückenstr. 50, D-76187 Karlsruhe, Germany

Eingegangen am 24 März 2001; akzeptiert am 10 Abril 2001

Abstract

The synthesis of the titanocene dichlorides $(\eta^5 - C_5H_5)(\eta^5 - C_5H_4SiMe_3)TiCl_2$ (3) and $(\eta^5 - C_5H_4CO_2R)_2TiCl_2$ (8a, $R = CH_3$; 8b, $R = CH_2CH_3$), which contain either electron-donating or electron-withdrawing substituents at the cyclopentadienyl fragments is discussed. While the reaction of 8a or 8b with LiC=CR' in different stoichiometric ratios leads only to product mixtures from which no pure components could be isolated, treatment of 3 with two equivalents of LiC=CR' (9a, R' = C_6H_5; 9b, R' = 'Bu; 9c, R' = SiMe_3) selectively produces the bis(alkinyl) titanocenes ($\eta^5 - C_5H_3$)($\eta^5 - C_5H_4$ SiMe_3)Ti(C=CR')₂ (10a, R' = C_6H_5; 10b, R' = 'Bu; 10c, R' = SiMe_3). However, it was found that when complex 10c is stirred in tetrahydrofuran solutions, Me_3SiC=C is eliminated and Me_3SiC=C-C=CSiMe_3 (11) along with [($\eta^5 - C_5H_5$)($\eta^5 - C_5H_4$ SiMe_3)Ti(C=CSiMe_3)]₂ (12) is formed. The solid-state structure of ($\eta^5 - C_5H_5$)($\eta^5 - C_5H_4$ SiMe_3)Ti(C=CSiMe_3)]₂ (10c) is reported. Complex 10c crystallises in the monoclinic space group P_c with two independent molecules in the asymmetric unit and with the cell constants a = 20.8131(6), b = 10.6615(3), c = 12.2543(4) Å, $\beta = 101.12(3)^\circ$, V = 2668.14(14) Å³ and Z = 4. 10c exhibits a pseudotetrahedrally coordination sphere around the Ti(IV) centre comprised of the two σ -bonded alkynyl ligands Me_3SiC=C and the η^5 -coordinated cyclopentadienyl moieties C_5H_5 as well as C_5H_4 SiMe_3. © 2001 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Die Synthese der Titanocendichloride (η^5 -C₅H₅)(η^5 -C₅H₄SiMe₃)TiCl₂ (**3**) und (η^5 -C₅H₄CO₂R)₂TiCl₂ (**8a**, R = CH₃; **8b**, R = CH₂CH₃) welche entweder elektronenschiebende oder elektronenziehende Substituenten an den Cyclopentadienylresten aufweisen, wird beschrieben. Während die Reaktion von **8a** oder **8b** mit LiC=CR' in unterschiedlichen stöchiometrischen Mengenverhältnissen zu einem Produktgemisch, das bislang nicht in reine Komponenten getrennt werden konnte führt, erhält man bei der Umsetzung von **3** mit zwei Äquivalenten LiC=CR' (**9a**, R' = C₆H₅; **9b**, R' = 'Bu; **9c**, R' = SiMe₃) selektiv die Bis(alkinyl)-Titanocene (η^5 -C₅H₅)(η^5 -C₅H₄SiMe₃)Ti(C=CR')₂ (**10a**, R' = C₆H₅; **10b**, R' = 'Bu; **10c**, R' = SiMe₃). Gefunden wurde, dass Komplex **10c** in Tetrahydrofuran als Lösungsmittel über einen längeren Zeitraum einen der beiden Me₃SiC=C-Liganden eliminiert, welches zur Bildung von Me₃SiC=C-C=CSiMe₃ (**11**) und [(η^5 -C₅H₅)(η^5 -C₅H₄SiMe₃)Ti(C=CSiMe₃)₂ (**10c**) wird vorgestellt. Der Komplex **10c** kristallisiert in der monoklinen Raumgruppe P_c mit zwei unabhängigen Molekülen in der asymmetrischen Einheit sowie den Zellkonstanten a = 20.8131(6), b = 10.6615(3), c = 12.2543(4) Å, $\beta = 101.12(3)^\circ$, V = 2668.14(14) Å³ und Z = 4. In **10c** weist das Ti(IV)-Zentrum

^{*} Corresponding author. Tel.: +49-371-531-1200; fax: +49-371-531-1833.

E-mail address: heinrich.lang@chemie.tu-chemnitz.de (H. Lang).

eine pseudo-tetraedrische Koordinationssphäre auf, die durch die beiden σ -gebundenen Alkinyl-Liganden Me₃SiC=C und den η^{5} -koordinierenden Cyclopentadienyl-Bausteinen C₅H₅ und C₅H₄SiMe₃ aufgebaut wird. © 2001 Elsevier Science B.V. All rights reserved.

Schlüsselwörter: Alkyne; Butadi-1,3-yne; Titanocene; Reductive elimination; X-ray structure analysis

1. Einleitung

Bis(alkinyl)-Titanocene der allgemeinen Art R'C=C-[Ti]-C=CR' { $[Ti] = (\eta^5-C_5H_5)_2Ti$, $(\eta^5-C_5H_4SiMe_3)_2Ti$, ...; R' = einbindiger organischer Rest) [1-3] haben sich als metallorganische zweizähnige Chelat-Liganden (metallorganische π -Pinzetten) zur Stabilisierung einkerniger niedervalenter Übergangsmetallkomplexbausteine etabliert [4]. Dabei wurde gefunden, daß (n⁵-C₅H₄SiMe₃)₂Ti(C=CSiMe₃)₂ in Lösung keine reduktive Eliminierung der Alkinyl-Bausteine unter Bildung von Me₃SiC=C-C=CSiMe₃ und [(η⁵- $C_5H_4SiMe_3_2Ti(C=CSiMe_3)_2$ eingeht [4]. Im Gegensatz dazu findet man für das entsprechende am Cyclopentadienylrest unsubstituierte Bis(alkinyl)-Titanocen (n⁵- $C_5H_5)_2Ti(C=CSiMe_3)_2$ die Spaltung einer Titan-Kohlenstoff-Acetylid-o-Bindung, wodurch in einer Folgereaktion das Butadiin Me₃SiC=C-C=CSiMe₃ sowie der zweikernige Titanocen-Alkinyl-Komplex $[(\eta^{5}-C_{5}H_{5})_{2}Ti(C=CSiMe_{3})]_{2}$ gebildet wird [2,5,6]. Die reduktive Eliminierung des Me₃SiC=C-Fragments verläuft dabei rasch. Über theoretische Arbeiten bezüglich der Stabilität von Bis(alkinyl)-Metallocenen wurde kürzlich berichtet [7]. Das unterschiedliche Reaktionsverhalten von $(\eta^5 - C_5 H_4 Si Me_3)_2 Ti$ -(C=CSiMe₃)₂ und (η⁵-C₅H₅)₂Ti(C=CSiMe₃)₂ läßt sich auf die unterschiedlich substituierten Cyclopentadienvlreste der Titanocen-Bausteine zurückführen. So zeigt sich, daß z.B. (n⁵-C₅Me₅)₂Ti(C=CSiMe₃)₂ vergleichsweise stabil ist und erst durch intensive Bestrahlung der Butadiin-Komplex (n⁵-C₅Me₅)₂Ti(Me₃Si-C=C-C=C-SiMe₃) gebildet wird. Dies ist offenbar auf sterische Gründe zurückzuführen [8]. Um den direkten Einfluß der Substituenten am Cyclopentadienyl-Liganden auf das Reaktionsverhalten von Bis(alkinyl)-Titanocenen in Lösung zu untersuchen, haben wir Verbindungen mit unterschiedlich funktionalisierten Cyclopentadienyl-Gruppen synthetisiert.

Wir berichten hier über die Synthese der Titanocendichloride (η^5 -C₅H₅)(η^5 -C₅H₄SiMe₃)TiCl₂ und (η^5 -C₅H₄CO₂R)₂TiCl₂ sowie deren Umsetzung mit Acetyliden. Das Reaktionsverhalten von (η^5 -C₅H₄R)₂Ti(C=CSiMe₃)₂ (R = H [2,5], SiMe₃) und (η^5 -C₅H₅)(η^5 -C₅H₄SiMe₃)Ti(C=CSiMe₃)₂ in Lösung wird vorgestellt.

2. Resultate und Diskussion

2.1. Synthese und Charakterisierung der Titanocendichloride $(\eta^{5}-C_{5}H_{5})(\eta^{5}-C_{5}H_{4}SiMe_{3})TiCl_{2}$ und $(\eta^{5}-C_{5}H_{4}CO_{2}R)_{2}TiCl_{2}$

Titanocendichloride mit gleichartigen Cyclopentadienyl-Liganden stellen eine gut untersuchte Verbindungsklasse dar [1-3].Dagegen ist über Titanocendichloride, die zwei unterschiedlich funktionalisierte Cyclopentadienylreste, z.B. $(\eta^5-C_5H_5)(\eta^5 C_5H_4R$)TiCl₂ (R = einbindiger organischer Rest) aufweisen, nur wenig bekannt [10]. Dies ist u.a. darauf zurückzuführen, daß bei der Darstellung solcher Systeme als weitere Produkte $(\eta^5-C_5H_5)_2TiCl_2$ sowie $(\eta^5-C_5H_5)_2TiCl_2$ sowie $(\eta^5-C_5H_5)_2TiCl_2$ C₅H₄R)₂TiCl₂ durch Ummetallierungsprozesse gebildet werden [11]. Eine Isolierung reiner Komponenten aus solchen statistischen Reaktionsmischungen ist oft schwierig [10]. Wir fanden einen einfachen Zugang zu unterschiedlich funktionalisierten Titanocendichloriden, in dem wir LiC₅H₄SiMe₃ in einer Portion mit äquimolaren Mengen an $(\eta^5 - C_5 H_5)$ TiCl₃ (1) in Tetrahydrofuran bei 25 °C zur Reaktion gebracht haben (Rkt. 1).

Im Verlauf der Reaktion von 1 mit 2 ändert sich die Farbe der Reaktionslösung von gelb nach rot [9]. Nach entsprechender Aufarbeitung erhält man 3 als hellroten Feststoff in 85% Ausbeute. Die Bildung von (η^5 - C_5H_5 ₂TiCl₂ bzw. (η^5 - $C_5H_4SiMe_3$ ₂TiCl₂ wurde unter den angewandten Reaktionsbedingungen nicht beobachtet. Dies kann eindeutig anhand der NMR-Spektren belegt werden. Im ¹H-NMR-Spektrum von 3 findet man für den C₅H₅-Liganden ein Singulett bei 6.55 ppm; für den C₅H₄SiMe₃-Liganden wird das für diesen Baustein typische AA'XX'-Kopplungsmuster mit zwei Pseudotripletts bei 6.63 und 6.87 ppm mit einer Kopplungskonstante von $J_{\rm HH} = 2.4$ Hz beobachtet. Im ¹³C{¹H}-NMR-Spektrum findet man das Resonanzsignal für den C₅H₅-Rest bei 120.1 ppm; für die ringständigen Kohlenstoffatome des C5H4SiMe3-Liganden werden dagegen - wie erwartet - drei Resonanzsignale bei 121.1, 129.1 sowie 133.2 ppm beobachtet, wobei

letzteres dem *ipso*-Kohlenstoffatom des Cyclopentadienylrestes zuzuordnen ist.

Im Rahmen unserer Untersuchungen zum Reaktionsverhalten von Bis(alkinyl)-Titanocenen, die unterschied-

liche Substituenten an wenigstens einem der beiden Cyclopentadienyl-Liganden des Titanocen-Bausteins aufweisen, waren wir u. a. auch daran interessiert, am Cyclopentadienylrest nicht nur elektronenschiebende Bausteine, sondern auch elektronenziehende Gruppen einzuführen. Als solche haben wir uns für den Carboxylatrest entschieden, da entsprechende Verbindungen relativ einfach zugänglich sind [12]. Rausch und Mitarbeiter berichteten kürzlich über die erfolgreiche Darstellung von (η^5 -C₅H₄CO₂CH₃)₂TiCl₂, einer Verbindung, die durch die Umsetzung von TiCl₄ mit Tl(C₅H₄CO₂CH₃) in guter Ausbeute zugänglich ist [12].

Ein weiterer Zugang zu dieser Verbindung, als auch zum entsprechenden Ethylcarboxy-funktionalisierten Titanocendichlorid-Komplex (η^5 -C₅H₄CO₂CH₂CH₃)₂-TiCl₂ ist durch die Verwendung von C₅H₄(CO₂R)-(SiMe₃) (**6a**, R = CH₃; **6b**, R = CH₂CH₃) gegeben. Die Cyclopentadiene **6a** und **6b** lassen sich in einfacher Weise durch die Umsetzung von Na(C₅H₄CO₂R) (**4a**, R = CH₃; **4b**, R = CH₂CH₃) mit äquimolaren Mengen an Me₃SiCl (**5**) in Diethylether darstellen [13]. Eine Isolierung von **6a** und **6b** gelingt jedoch nicht, da diese sich beim Erwärmen auf 25 °C merklich zu zersetzen beginnen. Daß **6a** bzw. **6b** bei der Umsetzung von **4a** bzw. **4b** mit **5** gebildet wurde, konnte jedoch zweifelsfrei NMR-spektroskopisch bei tiefer Temperatur nachgewiesen werden.

Es hat sich gezeigt, daß es bei der Darstellung der entsprechenden Titanocendichloride von Vorteil ist, das Lösungsmittel Diethylether aus den Reaktionslösungen von **6a** bzw. **6b** zu entfernen und durch ein Lösungsmittelgemisch bestehend aus Toluol/Tetrahydrofuran im Verhältnis von 6:1 zu ersetzen. Unterläßt man dies, so erhält man bei der späteren Umsetzung mit TiCl₄ ausschließlich Produktgemische, aus denen sich nur unter Anwendung aufwendiger Trennmethoden und damit einhergehender hoher Ausbeuteverluste die entsprechenden Produkte isolieren lassen.

Versetzt man solche Toluol/Tetrahydrofuran-Lösungen, die **6a** oder **6b** enthalten, bei -40 °C mit einem halben Äquivalent von in Toluol gelöstem TiCl₄, so entstehen unter Bildung von Me₃SiCl die entsprechenden Titanocendichloride $(\eta^5-C_5H_4CO_2R)_2TiCl_2$ (8a, R = CH₃; 8b, R = CH₂CH₃). Die roten, luftstabilen Komplexe 8a und 8b werden in ca. 35% Ausbeute erhalten (Rkt. 2).

Die Komplexe **8a** und **8b** wurden durch die Elementaranalyse und spektroskopisch (IR, ${}^{1}\text{H}$ -, ${}^{13}\text{C}\{{}^{1}\text{H}\}$ -NMR) vollständig charakterisiert.

Der RO₂C-Rest in **8a** bzw. **8b** gibt sich im IR-Spektrum mit zwei Absorptionsbanden starker Intensität bei 1720 ($v_{C=O}$) und 1158 (v_{C-O}) cm⁻¹ eindeutig zu erkennen. Dies entspricht den Werten, wie sie für diese Verbindungsklasse typisch sind [30].

In den ¹H-NMR-Spektren der Komplexe **8a** und **8b** findet man zwei Pseudotripletts für die Cyclopentadienyl-Ringprotonen bei ca. 6.6 und 7.2 ppm mit Kopplungskonstanten von $J_{\rm HH} = 2.7$ Hz. Das Resonanzsignal bei tieferem Feld kann dabei den in Nachbarstellung zu der elektronenziehenden RO₂C-Gruppe befindlichen Protonen zugeordnet werden [12,14]. Der CH₃-Baustein des Acetatrestes in **8a** wird bei 3.91 ppm als Singulett, die CH₃CH₂-Gruppe in **8b** bei 1.37 ppm als Triplett bzw. bei 4.35 ppm als Quartett mit ³ $J_{\rm HH} =$ 7.1 Hz beobachtet.

Charakteristisch in den ${}^{13}C{}^{1}H$ -NMR-Aufnahmen der Titanocendichloride **8a** und **8b** ist das Auftreten eines Singuletts bei 189.0 ppm für das entsprechende Carbonyl-Kohlenstoffatom der CO₂R-Einheiten. Die Cyclopentadienyl-Ringkohlenstoffatome treten im Bereich von 121 bis 130 ppm in Resonanz und weisen keine Besonderheiten auf. Die Alkyl-Reste der jeweiligen Carboxylatgruppen werden bei 51.3 (**8a**) bzw. 14.3 und 61.6 ppm (**8b**) beobachtet.

2.2. Darstellung und Charakterisierung der Bis(alkinyl)-Titanocene $(\eta^{5}-C_{5}H_{5})(\eta^{5}-C_{5}H_{4}SiMe_{3})Ti(C=CR')_{2}$

Versetzt man eine Tetrahydrofuranlösung von (η^{5} -C₅H₅)(η^{5} -C₅H₄SiMe₃)TiCl₂ (**3**) mit LiC=CR' (**9a**, R' = C₆H₅; **9b**, R' = 'Bu; **9c**, R' = SiMe₃) im molaren Verhältnis von 1:2, so erhält man die roten (**10a**), orangenen (**10c**) bzw. gelben (**10b**) Bis(alkinyl)-Titano-cene (η^{5} -C₅H₅)(η^{5} -C₅H₄SiMe₃)Ti(C=CR')₂ (**10a**, R' = C₆H₅; **10b**, R' = 'Bu; **10c**, R' = SiMe₃) in guter bis sehr guter Ausbeute (Rkt. 3).

Während die Komplexe 10a-c im Festkörper sowie 10a und 10b in Lösung über Monate beständig sind, unterliegt 10c einer reduktiven Eliminierung von Me₂SiC=C unter Bildung des **Butadiins** Me₃SiC=C-C=CSiMe₃ (11) und des dimeren Titanocenmonoalkinyls {[Ti](C=CSiMe₃)}₂ (12) {[Ti] = $(\eta^{5} C_5H_5$)(η^5 - C_5H_4 SiMe₃)Ti} (Rkt. 4). Ein identisches Verhalten wurde auch für $(\eta^5-C_5H_5)_2Ti(C=CSiMe_3)_2$ beobachtet [2,5]. Im Gegensatz dazu ist $(\eta^5-$ C₅H₄SiMe₃)₂Ti(C=CSiMe₃)₂ [1,29], in dem beide Cyclopentadienylgruppen einen Me₃Si-Substituenten aufweisen, in Lösung beständig, selbst über einen Zeitraum von Monaten. Der direkte Vergleich des Redoxverhaltens von 10c mit demjenigen von $(\eta^{5}-C_{5}H_{5})_{2}Ti(C=CSiMe_{3})_{2}$ zeigt, daß der C₅H₅-funktionalisierte Bis(alkinyl)-Titanocen-Komplex bedeutend schneller als 10c eine reduktive Eliminierung der Me₃SiC=C-Liganden eingeht. In einer Folgereaktion bilden sich 11 und $[(\eta^5 - C_5 H_5)_2 Ti(C = CSiMe_3)]_2$ [2,5].

Während sich $(\eta^5-C_5H_5)_2$ Ti $(C=CSiMe_3)_2$ bereits nach ca. 36 h vollständig in $[(\eta^5-C_5H_5)_2$ Ti $(C=CSiMe_3)]_2$ und Me₃SiC=C-C=CSiMe₃ (11) umgewandelt hat [5], benötigt 10c für diesen Prozeß wenigstens 72 h. Nach dieser Zeit wird keine weitere Bildung von 11 und 12 mehr beobachtet. Aus dem erhaltenen Reaktionsgemisch, welches neben 10c, 11 und 12 noch weitere Komponenten enthält, läßt sich nur 11 durch Chromatographie an Kieselgel analytisch rein abtrennen. Die Reindarstellung von 12 gelang, selbst durch fraktionierende Kristallisation bei tiefer Temperatur bisher nicht. Mechanistische Untersuchungen bezüglich des Reaktionsablaufes wurden durchgeführt [5,15–17].

Versuche, von den Carboxyl-funktionalisierten Titanocendichloriden **8a** und **8b** die jeweiligen Bis(alkinyl)-Titanocene zu erhalten, führten dagegen nicht zum Ziel. Selbst nach breiter Variation der Reaktionsbedingungen (Lösungsmittel, Temperatur und Stöchiometrie) konnten nur Produktgemische erhalten werden, die sich bislang nicht in reine Komponenten

Abb. 1. Festkörperstruktur und Atomnummerierungsschema von **10c** (ZORTEP-Plot, 30% Wahrscheinlichkeit der Schwingungsellipsoide). Ausgewählte interatomare Abstände (Å) und Bindungswinkel (°): Ti(1)–C(1) 2.111(4), Ti(1)–C(6) 2.109(4), C(1)–C(2) 1.209(6), C(6)–C(7) 1.205(6), Ti(1)–D(1) 2.062(2), Ti(1)–D(2) 2.053(3); C(6)–Ti(1)–C(1) 100.41(16), Ti(1)–C(1)–C(2) 176.0(4), C(1)–C(2)–Si(1) 170.1(4), Ti(1)–C(6)–C(7) 173.1(4), C(6)–C(7)–Si(2) 174.6(4), D(1)–Ti(1)–D(2) 134.53(11). [D(1), D(2) Zentroide der Cyclopentadienyl-Liganden].

auftrennen ließen. Die Entstehung solcher Produktgemische kann unter anderem damit in Einklang gebracht werden, daß das hinzugesetzte Acetylid $Me_3SiC=C^-$ sowohl an der Ti-Cl- als auch an der

Carboxyleinheit RO₂C angreifen kann. Weiterhin zeigte sich, daß das Fehlen elektronendonierender Substituenten an den Cyclopentadienylliganden einen destabilisierenden Effekt auf die Ti- $C_{C=C}$ - σ -Bindung ausübt (s.o.) und somit eventuell gebildetes (η^{5} - $C_{5}H_{4}CO_{2}R)_{2}Ti(C=CSiMe_{3})_{2}$ sich unter Spaltung der Ti- $C_{C=C}$ -Bindung zersetzt.

Die Komplexe **10a**-c weisen keine nennenswerten spektroskopischen (IR, ¹H-, ¹³C{¹H}-NMR) Besonderheiten auf. Die in **10a**-c vorhandenen Alkinyl-Liganden R'C=C geben sich im IR-Spektrum mit einer $v_{C=C}$ -Bande bei 2070 (**10b**), 2066 (**10a**) bzw. 2012 cm⁻¹ (**10c**) zu erkennen, d.h. bei Werten, wie sie für diese Verbindungsklasse typisch sind [1-3,18].

In den ${}^{13}C{}^{1}H$ -NMR-Spektren der Bis(alkinyl)-Titanocene **10a**-c findet man, wie für diese Systeme kennzeichnend ist, zwei Resonanzsignale für die alkinylischen Kohlenstoffatome bei 132.4 und 152.5 für **10a**, 137.6 und 140.1 für **10b** sowie 134.8 und 171.0

Tabelle 1 Kristall- und Meßdaten von 10c

Summenformel	C ₂₃ H ₃₆ Si ₃ Ti
Molekulargewicht	444.66
Kristallsystem	Monoklin
Raumgruppe	Pc
Elementarzelle	
a (Å)	20.8131(6)
$b(\mathbf{A})$	10.6615(3)
$c(\dot{A})$	12.2543(4)
β (°)	101.12(3)
$V(Å^3)$	2668.14(14)
$\rho_{\rm ber} ({\rm g \ cm^{-3}})$	1.107
F(000)	952
Z	4
Kristallgröße (mm)	$0.30 \times 0.30 \times 0.30$
Diffraktometer	Bruker SMART CCD
Strahlung $(\lambda, \text{ Å})$	$Mo-K_{\alpha}$ (0.71073)
Max. und min. Transmission	0.8740 und 0.8740
Absorptionskoeffizient (μ , mm ⁻¹)	0.461
Meßtemperatur (K)	180
Meßmethode	ω-Scan
Meßbereich (°)	$1.9 \le \theta \le 24.7$
Index-Bereiche	$-15 \le h \le 24, -12 \le k \le 8,$
	$-12 \le l \le 14$
Gemessene Reflexe	8294
Unabhängige Reflexe	5210
Beobachtete Reflexe $[I \leq 2\sigma(I)]$	4983
Verfeinerungsparameter	487
$R_1^{a}, wR_2^{a} [I \le 2\sigma(I)]$	0.0350, 0.0844
R_1^{a} , wR_2^{a} (all data)	0.0384, 0.0887
S ^b	1.086
Max., Min. Restelektronendichte (e $Å^{-3}$)	0.269, 0.354

^a 1 = $\Sigma (||F_o| - |F_c||)/\Sigma |F_o|$; $wR^2 = [\Sigma (w(F_o^2 - F_c^2)^2)/\Sigma (wF_o^4)]^{1/2}$. ^b $S = [\Sigma w(F_o^2 - F_c^2)^2]/(n-p)^{1/2})$ mit $w = 1/[\sigma^2(F_o^2) + (0.0383P)^2 + 1.5464P]$ und $P = (F_o^2 + 2F_c^2)/3$.

ppm für **10c**. Dabei ist der Wert der chemischen Verschiebung bei tieferm Feld stets dem titanständigen Alkinyl-Kohlenstoffatom C_{α} (Ti $C_{\alpha} \equiv C_{\beta}$) zuzuordnen [1– 5].

2.3. Die Festkörperstruktur von 10c

Aus Diethylether konnten bei -30 °C Einkristalle von **10c** erhalten werden, von denen eine Einkristall-Röntgenstrukturanalyse angefertigt wurde (Abb. 1). Ausgewählte interatomare Abstände (Å) und Winkel (°) sind in der Legende von Abb. 1 aufgeführt. Die Kristall- und Meßdaten sind der Tabelle 1 (Abschnitt 3) zu entnehmen.

Komplex **10c** kristallisiert in der monoklinen Raumgruppe P_c mit zwei unabhängigen Molekülen **10c** in der asymmetrischen Einheit, die bis auf geringfügige Unterschiede identisch sind. Aufgrund dieser Tatsache ist nur Molekül 1 abgebildet. Das Titan(IV)-Zentrum Til ist von zwei σ -gebundenen Me₃SiC=C-Liganden sowie den η^5 -koordinierenden C₅H₅- und C₅H₄SiMe₃-Bausteinen pseudo-tetraedrisch umgeben (Abb. 1). Die Titan-Koh75

lenstoffabstände der Ti-C=CSiMe₃-Einheiten sind mit 2.109(4) [Ti(1)-C(6)] und 2.111(4) Å [Ti(1)-C(1)] im Vergleich zu Titan-Kohlenstoff-Bindungen, in denen sp³- bzw. sp²-hybridisierte titangebundene Kohlenstoffatome vorliegen [z.B. $(\eta^5-C_5H_5)_2Ti(CH_2Ph)_2$: 2.239(6)/2.210(5) Å [19], $(\eta^5-C_5H_5)_2$ TiMe₂: 2.170(2)/ 2.181(2) Å [20], $(\eta^5 - C_5 H_4 SiMe_3)_2 Ti(Cl)(CH_2 SiMe_3)$: 2.209(6) Å [21] und $(\eta^5 - C_9 H_7)_2 TiMe_2$: 2.21(2) Å [22]] verkürzt. Entsprechend lange Ti-C-Abstände werden in anderen alkinylsubstituierten Titanocen-Komplexen des $(\eta^{5}-C_{5}H_{4}R)_{2}Ti(C=CR')_{2}$ bzw. $[(\eta^{5}-C_{5}H_{3}R)_{2}-$ Typs SiMe₂]Ti(C=CR')₂ gefunden [23]. Die Kohlenstoff-Kohlenstoff-Dreifachbindungslängen entsprechen mit 1.209(6) [C(1)-C(2)] bzw. 1.205(6) Å [C(6)-C(7)] den Werten, wie sie z.B. in organischen (RC=CR, R'C=CR; R, R' = einbindiger organischer Rest) oder metallorganischen Alkinen (RC=CML_n, L_nMC=CML_n; ML_n = 17-Valenzelektronen Komplexfragment) gefunden werden [24–28]. Der Öffnungswinkel C1–Ti–C6 beträgt 100.41(16)° und ist typisch für diese Art von Komple- $(\eta^5 - C_5 H_4 SiMe_3)_2 Ti(C \equiv CSiMe_3)_2$: В. xen [z. 102.8(2)°].[29] Im Vergleich zu Komplexen, die Ti-C(sp³)-σ-Bindungen aufweisen ist dieser Winkel jedoch aufgeweitet [19-22]. Die Ti-C=C-Si-Einheiten [Ti(1)-C(1)-C(2)]sind nahezu linear 176.0(4), Ti(1)-C(6)-C(7) 173.1(4), C(1)-C(2)-Si(1) 170.1(4), C(6)–C(7)–Si(2) 174.6(4)°] (Abb. 1).

Im allgemeinen entsprechen die Strukturmerkmale von Komplex **10c** denen, wie sie auch für (η^5 - $C_5H_4SiMe_3)_2Ti(C=CSiMe_3)_2$ gefunden wurden [29].

3. Experimenteller Teil

Alle Reaktionen wurden mittels Schlenkrohrtechnik in einer gereinigten Stickstoff-Atmosphäre (Wasserentfernung durch Molekularsieb 4 Å, Sauerstoffentfernung mittels eines Kupferoxid-Katalysator der BASF AG) durchgeführt. Die Lösungsmittel wurden unter Inertgas (N_2) getrocknet und stets frisch destilliert verwendet [Tetrahydrofuran, Et₂O, Petrolether (Siedebereich 40– 60 °C): Natrium/ Benzophenon; n-Pentan, Methylenchlorid: CaH₂]. Zur Chromatographie wurde Kieselgur (Fa. Baker Chemicals) bzw. Kieselgel (Fa. Merck) verwendet. IR (KBr): Perkin-Elmer, Modell 893G. ¹Hund ¹³C{¹H}-NMR: Bruker AC 200; ¹H-NMR: 200.13 MHz, Standard intern durch Lösungsmittel (CDCl₃ $\delta = 7.27$; ¹³C{¹H}-NMR: 50.323.MHz, Standard intern durch Lösungsmittel (CDCl₃ $\delta = 77.0$). EI- bzw. FD-MS: Finnigan (Varian) MAT, Modell 8400. C,H-Elementaranalysen: C,H-Analysator der Fa. Carlo Erba. Die Schmelz- bzw. Zersetzungspunkte wurden mit einem Schmelzpunktblock der Fa. Gallenkamp (Typ MFB 595 010 M) bestimmt.

3.1. Allgemeine Bemerkungen

Die Verbindungen $C_5H_5SiMe_3$ [31], $NaC_5H_4CO_2CH_3$ [13], $NaC_5H_4CO_2C_2H_5$ [13] sowie die Komplexe ($\eta^5-C_5H_5$)_2TiCl_2 [29a], ($\eta^5-C_5H_5$)_2Ti(C=CSiMe_3)_2 [1,2,5] und ($\eta^5-C_5H_4SiMe_3$)_2Ti(C=CSiMe_3)_2 [1,29b] wurden nach literaturbekannten Vorschriften dargestellt. Alle weiteren Edukte sind kommerziell erhältlich und wurden ohne weitere Reinigung eingesetzt.

3.2. Darstellung von $(\eta^{5}-C_{5}H_{5})(\eta^{5}-C_{5}H_{4}SiMe_{3})TiCl_{2}$ (3)

Zu einer Lösung von 4.70 g (34.0 mmol) C₅H₅SiMe₃ in 50 ml Tetrahydrofuran werden bei -70 °C 12 ml ⁿBuLi (30.0 mmol, 2.5 M Lösung in Hexan) gegeben. Nach 5 Min Rühren erwärmt man innerhalb von 1 h auf 25 °C. Es wird 5 Min zum Rückfluß erhitzt und anschließend auf 25 °C gekühlt. Dazu gibt man in einer Portion eine Lösung von 7.46 g (34.0 mmol) (n⁵- C_5H_5)TiCl₃ (1) in 20 ml Tetrahydrofuran. Nach wenigen Minuten findet ein Farbumschlag von gelb nach rot statt. Nach 1 h Erhitzen zum Rückfluß werden alle flüchtigen Bestandteile im Ölpumpenvakuum entfernt, der Rückstand in 30 ml Methylenchlorid aufgenommen und durch Kieselgur filtriert. Nach Entfernen des Lösungsmittels im Ölpumpenvakuum erhält man 3 (8.30 g, 25.8 mmol, 76% bezogen auf eingesetztes 1) als orangefarbenen Feststoff.

Smp.: 168 °C. ¹H-NMR (CDCl₃) (δ): 0.30 (s, SiMe₃, 9 H), 6.55 (s, C₅H₅, 5 H), 6.63 (pt, $J_{HH} = 2.4$ Hz, C₅H₄, 2 H), 6.87 (pt, $J_{HH} = 2.4$ Hz, C₅H₄, 2 H). ¹³C{¹H}-NMR (CDCl₃) (δ): 0.5 (SiMe₃), 120.1 (C₅H₅), 121.1 (*CH*/C₅H₄) 129.1 (*CH*/C₅H₄), 133.2 (¹C/C₅H₄). EI MS [m/z (rel. Int.)]: 321 (13), [M⁺]; 305 (94), [M⁺ - Me]; 248 (46), [M⁺ - SiMe₃]; 240 (100), [M⁺ - Me - C₅H₅]. Elementaranalyse für C₁₃H₁₈Cl₃SiTi (321.16): ber. C, 48.62; H, 5.65; gef. C, 48.23; H, 5.71%.

3.3. Darstellung von $(\eta^5 - C_5 H_4 C O_2 R)_2 Ti Cl_2$ (8*a*, $R = CH_3$; 8*b*, $R = C_2 H_5$)

Beispielhaft für die Darstellung von **8a** und **8b** wird die Synthese von **8b** beschrieben. Zu einer Lösung von 6.32 g (39.45 mmol) NaC₅H₄CO₂Et in 30 ml Et₂O werden bei – 50 °C 4.29 g (39.45 mmol) Me₃SiCl in einer Portion addiert. Nach 40 min Rühren bei – 35 °C werden alle flüchtigen Bestandteile im Ölpumpenvakuum entfernt. Zum gebildeten Rückstand wird ein auf – 35 °C gekühltes Lösungsmittelgemisch bestehend aus Toluol und Tetrahydrofuran im Verhältnis von 6:1 addiert. Danach werden 3.74 g (19.73 mmol) TiCl₄ in 5 ml Toluol auf – 35 °C gekühlt und innerhalb von 10 Min zu der Reaktionslösung getropft. Man rührt 1 h bei 25 °C und entfernt anschließend alle flüchtigen Bestandteile im Ölpumpenvakuum. Der Rückstand wird mit 30 ml Petrolether gewaschen und anschließend mit 30 ml Methylenchlorid durch Kieselgur filtriert. Das Titanocendichlorid **8b** (2.45 g, 6.71 mmol, 34% bezogen auf eingesetztes TiCl_4) fällt nach Entfernen des Lösungsmittels im Ölpumpenvakuum als analysenreiner roter Feststoff an.

3.4. **8b**

Smp.: 197 °C. ¹H-NMR (CDCl₃) (δ): 1.37 (t, $J_{HH} =$ 7.1 Hz, CH₂CH₃, 6 H), 4.35 (q, $J_{HH} =$ 7.1 Hz, CH₂CH₃, 4 H), 6.56 (pt, $J_{HH} =$ 2.7 Hz, C₅H₄, 4 H), 7.19 (pt, $J_{HH} =$ 2.7 Hz, C₅H₄, 4 H). ¹³C{¹H}-NMR (CDCl₃) (δ): 14.3 (CH₃), 61.6 (CH₂), 121.5 (CH/C₅H₄), 124.4 (CH/ C₅H₄), 129.7 (ⁱC/C₅H₄), 189.0 (CO₂Et). EI MS [*m*/*z* (rel. Int.)]: 392 (17), [M⁺]; 255 (40), [M⁺ – C₅H₄CO₂Et]; 92 (100), C₅H₄CO⁺. Elementaranalyse für C₁₆H₁₈Cl₂O₄Ti, (393.10): ber. C, 48.89; H, 4.62; gef. C, 48.60; H, 4.54%.

3.5. Darstellung von 8a

Nach zur Darstellung von **8b** analoger Reaktionsführung (s.o.) erhält man bei der Umsetzung von 5.0 g (34.25 mmol) NaC₅H₄CO₂Me mit 3.72 g (34.25 mmol) Me₃SiCl und 3.25 g (17.13 mmol) TiCl₄ rotes **8a** 2.3 g (6.34 mmol, 37% bez. auf eingesetztes TiCl₄).

3.6. **8a**

Smp.: 195 °C. ¹H-NMR (CDCl₃) (δ): 3.91 (s, CH₃, 3 H), 6.58 (pt, $J_{\rm HH} = 2.7$ Hz, C_5H_4 , 4H), 7.20 (pt, $J_{\rm HH} = 2.7$ Hz, C_5H_4 , 4H). ¹³C{¹H}-NMR (CDCl₃) (δ): 51.3 (CO₂<u>Me</u>), 121.5 (*CH*/C₅H₄), 124.3 (*CH*/C₅H₄), 129.7 (ⁱC/C₅H₄), 189.0 (CO₂Me). EI MS [m/z (rel. Int.)]: 364 (11), [M⁺]; 241 (25), [M⁺ - C₅H₅CO₂Me - Cl]. Elementaranalyse für C₁₄H₁₄Cl₂O₄Ti, (365.05): ber. C, 46.06, H, 3.89; gef. C, 45.61; H, 3.50%.

3.7. Darstellung von

 $(\eta^{5}-C_{5}H_{5})(\eta^{5}-C_{5}H_{4}SiMe_{3})Ti(C\equiv CR')_{2}$ (10a, $R' = C_{6}H_{5}$; 10b, $R' = {}^{t}Bu$; 10c, $R' = SiMe_{3}$)

3.7.1. Synthese von 10a

Zu einer Lösung von 1.3 g (12.5 mmol) $HC\equiv CC_6H_5$ in 20 ml Et₂O werden bei -70 °C 5.0 ml "BuLi (12.5 mmol, 2.5 M Lösung in Hexan) in einer Portion gegeben. Nach 5 Min Rühren erwärmt man innerhalb von 1 h auf 25 °C. Danach fügt man in einer Portion eine Lösung von 2.0 g (6.23 mmol) **3** in 20 ml Tetrahydrofuran zu und rührt bei 25 °C für weitere 4 h. Daraufhin werden alle flüchtigen Bestandteile im Ölpumpenvakuum entfernt und der Rückstand mit 20 ml Et₂O durch Kieselgur filtriert. Nach Entfernen des Lösungsmittels erhält man **10a** (2.20 g, 4.86 mmol, 78% bezogen auf eingesetztes **3**) als einen roten Feststoff. Smp.: 117 °C. IR (KBr) (cm⁻¹): 2066 [$\nu_{c=c}$] ¹H-NMR (CDCl₃) (δ): 0.39 (s, SiMe₃, 9H), 6.48 (s, C₅H₅, 5H), 6.37 (pt, $J_{HH} = 2.4$ Hz, C₅H₄, 2H), 6.45 (pt, $J_{HH} = 2.4$ Hz, C₅H₄, 2H), 7.2–7.4 (m, C₆H₅, 10H). ¹³C{¹H}-NMR (CDCl₃) (δ): 0.1 (SiMe₃), 113.4 (*CH*/C₅H₄), 114.5 (C₅H₅), 121.4 (*CH*/C₅H₄), 130.8 ($^{i}C/C_{5}H_{4}$), 126.6 (*CH*/C₆H₅), 128.9 (*CH*/C₆H₅) 129.7 ($^{i}C/C_{6}H_{5}$), 130.4 (*CH*/C₆H₅), 132.4 (TiC=C), 152.5 (TiC=C). EI MS [m/z(rel. Int.)]: 451 (5) [M⁺], 349 (20) [M⁺ – SiMe₃], 250 (54) [M⁺ – 2C=CPh – SiMe₃], 202 (100) [M⁺ – C=CSiMe₃ – SiMe₃]. Elementaranalyse für C₂₉H₂₈SiTi (452.51): ber. C, 76.98; H, 6.24; gef. C, 76.60; H, 6.60%.

3.7.2. Synthese von 10b

Durchführung und Aufarbeitung wie für **10a** beschrieben. Experimentelle Details: $HC\equiv C'Bu$ (0.51 g, 6.2 mmol), "BuLi (2.48 ml, 6.2 mmol), **3** (1.0 g, 3.1 mmol). Ausbeute: 1.29 g (4.4 mmol, 71% bezogen auf eingesetztes **3**).

3.7.3. 10b

Smp.: 119 °C. IR (KBr) (cm⁻¹): 2070 [$\nu_{c=c}$]. ¹H-NMR (CDCl₃) (δ): 0.41 (s, SiMe₃, 9H) 1.23 (s, 'Bu, 18H), 6.10 (s, C₅H₅, 5H), 6.48 (pt, $J_{HH} = 2.3$ Hz, C₅H₄, 2H), 6.61 (pt, $J_{HH} = 2.3$ Hz, C₅H₄, 2H). ¹³C{¹H}-NMR (CDCl₃) (δ): 0.8 (SiMe₃), 28.9 (*CH*₃/'Bu), 31.7 (^{*q*}C/'Bu), 112.9 (*CH*/C₅H₄), 113.2 (*CH*/C₅H₄), 113.7 (C₅H₅), 130.8 (^{*i*}C/C₅H₄), 137.6 (TiC=C), 140.1 (TiC=C). EI MS [m/z (rel. Int.)]: 412 (6) [M⁺], 340 (3) [M⁺ - SiMe₃], 258 (31) [M⁺ - C₂Bu - SiMe₃], 178 (100) [M⁺ - 2-C₂Bu - SiMe₃]. Elementaranalyse für C₂₅H₃₆SiTi (412.53): ber. C, 72.79; H, 8.79; gef. C, 72.72; H, 8.59%.

3.7.4. Synthese von 10c

Durchführung und Aufarbeitung wie für **10a** beschrieben. Experimentelle Einzelheiten: HC=CSiMe₃ (4.6 g, 46.8 mmol), "BuLi (18 ml, 45.0 mmol), **3** (7.39 g, 23.0 mmol). Ausbeute: 8.9 g (20.0 mmol, 89% bezogen auf eingesetztes **3**).

3.7.5. **10**c

Smp.: 119 °C. IR (KBr) (cm⁻¹): 2012 [$\nu_{C=C}$]. ¹H-NMR (C₆D₆) (δ): 0.15 (s, SiMe₃, 18H), 0.28 (s, SiMe₃, 9H), 6.32 (s, C₅H₅, 5H), 6.29 (pt, $J_{HH} = 2.4$ Hz, C₅H₄, 2H), 6.69 (pt, $J_{HH} = 2.4$ Hz, C₅H₄, 2H). ¹³C{¹H}-NMR (C₆D₆) (δ): 0.0 (SiMe₃), 0.2 (SiMe₃), 113.4 (*CH*/C₅H₄), 114.1 (C₅H₅), 121.8 (*CH*/C₅H₄), 125.0 ($^{i}C/C_{5}H_{4}$), 134.8 (TiC=C), 171.0 (TiC=C). EI MS [m/z (rel. Int.)]: 444 (7) [M⁺], 371 (6) [M⁺ - SiMe₃], 346 (100) [M⁺ - C₂SiMe₃], 250 (78) [M⁺ - 2C₂SiMe₃]. Elementaranalyse für C₂₃H₃₆Si₃Ti, (444.67): ber. C, 62.12; H, 8.16; gef. C, 62.33; H, 8.28%.

3.8. Röntgenstrukturanalyse von 10c

Die Kristall- und Meßdaten der Verbindung **10c** sind der Tabelle 1 zu entnehmen; ausgewählte interatomare Abstände und Bindungswinkel sind in der Legende von Abb. 1 aufgeführt. Die Lösung der Struktur erfolgte durch direkte Methoden, Methode der kleinsten Fehlerquadratesumme (Programmsystem: SHELX-97 [32]). Die Nichtwasserstoffatome wurden anisotrop verfeinert. Die in Abb. 1 wiedergegebene Struktur wurde mit dem Programm ZORTEP [33] angefertigt Abschnitt 4.

3.9. Darstellung von $Me_3SiC = C - C = CSiMe_3$ (11) und $[(\eta^5 - C_5H_5)(\eta^5 - C_5H_4SiMe_3)Ti(C = CSiMe_3)]_2$ (12)

500 mg (1.12 mmol) 10c werden in 50 ml Tetrahydrofuran bei 25 °C gelöst und 3 d unter IR-Kontrolle gerührt. Während dieser Zeit wird die Reaktionslösung zusehends dunkler. Danach entfernt man alle flüchtigen Bestandteile im Ölpumpenvakuum. Der Rückstand wird zunächst mit kaltem (-10 °C) *n*-Pentan (4×10 ml), dann mit kaltem (-10 °C) Et₂O (3×5 ml) extrahiert. Der verbleibende rote Rückstand wird mit einem Lösungsmittelgemisch aus Toluol/Methylenchlorid im Verhältnis von 1:1 durch Kieselgur filtriert. Die Eluate werden im Ölpumpenvakuum vom Lösungsmittel befreit. Aus den n-Pentan-Fraktionen läßt sich 11 (100 mg, 0.50 mmol, 90% bezogen auf 10c) und 12 (350 mg, 0.50 mmol, 90% bezogen auf 10c) und aus dem Et_2O -Eluat, 10c (50 mg, 0.11 mmol, 10% bezogen auf eingesetztes 10c) isolieren. Das Gemisch der Verbindungen 11 und 12 konnte auch durch fraktionierende Kristallisation nicht in reine Komponenten getrennt werden.

Die Charakterisierung von 11 erfolgte durch Spektrenvergleich mit authentischem 11 [34].

3.10. **12**

IR (KBr) (cm⁻¹): 1795 [$\nu_{C=C}$]. ¹H-NMR (C₆D₆) (δ): 0.17 (s, SiMe₃, 18H), 0.28 (s, SiMe₃, 18H), 5.45 (s, C₅H₅, 10H), 5.4 (bs, C₅H₄, 4H), 5.8 (bs, C₅H₄, 4H). FD-MS [m/z]: 695.

4. Supplementary material

Die Strukturdaten (ohne Strukturfaktoren) wurden bei dem Cambridge Crystallographic Data Centre hinterlegt und können unter Angabe der Hinterlegungsnummer CCDC no. 157939 unter folgender Adresse angefordert werden: The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Anerkennung

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeit. Für die Aufnahme der Massenspektren sind wir Herrn Thomas Jannack (Arbeitsgruppe Prof. Huttner, Universität Heidelberg) zu Dank verpflichtet.

Literatur

- [1] H. Lang, D. Seyferth, Z. Naturforsch. 45b (1990) 212.
- [2] G.L. Wood, C.B. Knobler, M.F. Hawthorne, Inorg. Chem. 28 (1989) 382.
- [3] Weitere Beispiele:
 - (a) A. Seebald, P. Fritz, B. Wrackmeyer, Spectrochim. Acta Sect. A 41 (1985) 1405;
 - (b) R. Jimenez, M.C. Barral, V. Moreno, A. Santos, J. Organomet. Chem. 174 (1979) 281;
 - (c) A.D. Jenkins, M.F. Lappert, R.C. Srivastava, J. Organomet. Chem. 23 (1970) 165;
 - (d) J.H. Teuben, H.J. Liefde Meijer, J. Organomet. Chem. 17 (1969) 87;
- (e) M. Köpf, M. Schmidt, J. Organomet. Chem. 10 (1967) 383.[4]Übersichtsartikel:

(a) H. Lang, D.S.A. George, G. Rheinwald, Coord. Chem. Rev. 206–207 (2000) 101;

- (b) H. Lang, K. Köhler, S. Blau, Coord. Chem. Rev. 143 (1995) 113;
- (c) H. Lang, M. Weinmann, Synlett (1996) 1;
- (d) H. Lang, G. Rheinwald, J. Prakt. Chem./Chemiker Zeitung 341 (1999) 1;
- (e) S. Lotz, P.H. van Rooyen, R. Meyer, Adv. Organomet. Chem. 37 (1995) 219;
- (f) W. Beck, B. Niemer, M. Wieser, Angew. Chem. Int. Ed. Engl. 32 (1993) 923;
- (g) R. Nast, Coord. Chem. Rev. 47 (1982) 89.
- [5] (a) U. Rosenthal, H. Görls, J. Organomet. Chem. 439 (1992) C36;
- (b) A. Ohff, S. Pulst, C. Lefeber, N. Peulecke, P. Arndt, V.V. Burlakov, U. Rosenthal, Synlett (1996) 111.
- [6] U. Rosenthal, P.-M. Pellny, F.G. Kirchbauer, V.V. Burlakov, Acc. Chem. Res. 33 (2000) 119.
- [7] E.D. Jemmis, K.T. Giju, J. Am. Chem. Soc. 120 (1998) 6952.
- [8] P.-M. Pellny, F.G. Kirchbauer, V.V. Burlakov, W. Baumann, A.
- Spannenberg, U. Rosenthal, J. Am. Chem. Soc. 121 (1999) 8313. [9] (a) A.M. Cardoso, R.J.H. Clark, S. Moorhouse, J. Chem. Soc.
 - Dalton (1980) 1156; (b) M.F. Lappert, C.J. Pickett, P.I. Riley, P.I.W. Yarrow, J. Chem. Soc. Dalton (1981) 805.
- [10] z.B.
 - (a) K.C. Ott, E.J.M. deBoer, R. Grubbs, Organometallics 3 (1984) 223;
 - (b) P.G. Grassmann, C.H. Winter, J. Am. Chem. Soc. 108 (1986) 5073;
 - (c) M.D. Rausch, J. Organomet. Chem. 405 (1991) 41;
 - (d) M.D. Rausch, J. Organomet. Chem. 381 (1990) 35;
 - (e) N.J. Covielle, J. Organomet. Chem. 483 (1994) 159.

- [11] D. Kondakov, E. Negishi, J. Chem. Soc. Chem. Commun. (1996) 963.
- [12] M.D. Rausch, J.F. Lewison, J. Organomet. Chem. 358 (1988) 61.
- [13] (a) W.P. Hart, D. Shihua, M.D. Rausch, J. Organomet. Chem. 282 (1985) 111;
 (b) W.P. Hart, D.W. Macomber, M.D. Rausch, J. Am. Chem. Soc. 102 (1980) 1196.
- [14] M.D. Rausch, A. Siegel, J. Organomet. Chem. 17 (1969) 117.
- [15] (a) G. Erker, W. Frömberg, R. Benn, R. Mynott, K. Angermund, C. Krüger, Organometallics 8 (1989) 911;
 (b) G. Erker, W. Frömberg, R. Mynott, B. Gabor, C. Krüger, Angew. Chem. 98 (1986) 456.
- [16] T. Cuenca, R. Gómez, P. Gómez-Sal, G.M. Rodriquez, P. Royo, Organometallics 11 (1992) 1229.
- [17] U. Rosenthal, S. Pulst, P. Arndt, A. Ohff, A. Tillack, W. Baumann, R. Kempe, V.V. Burlakov, Organometallics 14 (1995) 2961.
- [18] (a) H. Köpf, M. Schmidt, J. Organomet. Chem. 10 (1967) 383;
 (b) J.H. Teuben, H.J. de Liefde Meijer, J. Organomet. Chem. 17 (1969) 87;
 (c) A.D. Jenkins, M.F. Lappert, R.C. Srivastava, J. Organomet. Chem. 23 (1970) 165;
 (d) R. Jimenez, M.C. Barral, U. Moreno, A. Santos, J. Organomet. Chem. 174 (1979) 281.
- [19] J. Scholz, F. Rehbaum, K.H. Thiele, R. Goddard, P. Betz, K.H. Krüger, J. Organomet. Chem. 443 (1993) 93.
- [20] U. Thewalt, T. Wöhrle, J. Organomet. Chem. 464 (1994) C17.
- [21] H. Lang, W. Frosch, I.Y. Wu, S. Blau, B. Nuber, Inorg. Chem. 35 (1996) 6266.
- [22] J.L. Atwood, W.E. Hunter, D.C. Hrneir, E. Samuel, H. Alt, M.D. Rausch, Inorg. Chem. 14 (1975) 1757.
- [23] H. Lang, S. Blau, B. Nuber, Z. Zsolnai, Organometallics 14 (1995) 3216.
- [24] J. Dale, Properties of acetylenic compounds, in: H.G. Viehe (Ed.), Chemistry of Acetylenes, Marcel Dekker, New York, 1969, p. 53.
- [25] (a) W. Fries, W. Schwarz, H.-D. Hausen, J. Weidlein, J. Organomet. Chem. 159 (1978) 373;
 (b) G.D. Stucky, A.M. McPherson, W.E. Rhine, J.J. Eisch, J.L. Considine, J. Am. Chem. Soc. 96 (1974) 1941.
- [26] W.J. Evans, R.A. Keyer, J.W. Ziller, Organometallics 12 (1993) 2618.
- [27] N.A. Bell, J.W. Nowell, G.B. Coates, H.M.M. Shearer, J. Organomet. Chem. 273 (1984) 179.
- [28] G. Erker, M. Albrecht, C. Krüger, M. Nolte, S. Werner, Organometallics 12 (1993) 4979.
- [29] (a) M.F. Lappert, C.J. Pickett, P.I. Riley, P.I.W. Yarrow, J. Chem Soc. Dalton Trans. (1981) 805;
 (b) H. Lang, M. Herres, L. Zsolnai, Organometallics 12 (1993) 5008 und dort zit. Lit.
- [30] B. Schrader, Raman/Infrared Atlas of Organic Compounds, 2nd edn, VCH-Verlag, Weinheim, 1989.
- [31] (a) C.S. Kraihanzel, M.L. Losee, J. Am. Chem. Soc. 90 (1968) 4701;

(b) P.J. Barker, A.G. Davies, R. Henriquez, J.Y. Nedelec, J. Chem. Soc. Perkin Trans. II (1982) 745.

- [32] G.M. Sheldrick, SHELX97, Universität Göttingen; Göttingen, Germany, 1997.
- [33] L. Zsolnai, G. Huttner, ZORTEP, Universität Heidelberg, 1998.
- [34] (a) F. Hoelzl, B. Wrackmeyer, J. Organomet. Chem. 179 (1979) 397;
 - (b) J. Nakovich, S.D. Shook, F.A. Miller, D.R. Parnell, R.E. Sacher, Spectrochim. Acta Part A 35 (1979) 495.